Physics 3036 Quantum mechanics I

- 1. Instructor (s) Ho Bun Chan, Rm 4421, 23587493, hochan@ust.hk
- 2. Teaching assistants: Shek Kit CHU, Rm 4469, phskchu@ust.hk

Zoucheng ZHANG, Rm 2231A, zzhangio@connect.ust.hk Kaiyuan FAN, Rm 4026 IAS, kfanae@connect.ust.hk

Xinglei MA, xmabk@connect.ust.hk

- 3. Meeting time and venue
 - Lecture

Time: Tue, Thu 04:30 - 05:50 pm

Venue: G010, CYT Bldg

Tutorial

Time: Wed 3:30PM - 4:20PM Venue: 1033 LSK (T1), 4504 (T2)

4. course description

Credit Points: 3

Pre-requisite: PHYS2022

Exclusion: PHYS 3037

Brief information

Basic properties of Schrodinger equation, bound and scattering states in simple onedimensional potentials, formulation of quantum mechanics in terms of Hilbert space and Dirac bracket notation, Schrodinger equation in three-dimensions, angular momentum, hydrogen atom wavefunction, systems of identical particles, spin and statistics, multielectron atoms and the periodic table.

5. Intended Learning Outcomes

On successful completion of this course, students are expected to be able to:

- 1. Explain the meaning of wavefunctions
- 2. Calculate the exact wavefunctions and energy levels of typical one-dimensional single particle problems

- 3. Represent quantum mechanical states as vectors in a Hilbert space
- 4. Predict possible outcomes of experimental observations on a quantum mechanical state
- 5. Analyze exact wavefunctions of the hydrogen atom and relate it to experimental observations
- 6. Describe orbital and spin angular momenta of an electron and their relation to experimental observations
- 7. Solve simple problems involving more than one non-interacting particles

6. Assessment scheme

Grading Scheme

Homework	20%
Midterm	25%
Quiz	5
Final	50%

Assessment marks for individual assessed tasks will be released within two weeks of the due date.

7. Student Learning Resources

Textbook: David J. Griffiths, Introduction to Quantum Mechanics, 2nd Edition, Prentice Hall (2005) or 3rd Edition, Cambridge University Press (2018)

Lecture notes will be available on the course website before each lecture.

8. Teaching and learning activities

Lectures (3 hours) and tutorials (1 hour) focus on explaining the course topics.

9. Course Schedule

Lecture Schedule:

Lecture	Date	Content	Textbook Reference
1	4 Feb	Wave function and Born's interpretation; operators and first quantization rules	Ch. 1
2	6 Feb	Time-independent Schroedinger equation, stationary states, infinite square well potential	Ch. 2.1, 2.2
3	11 Feb	Quantum harmonic oscillator I	Ch. 2.3 (excluding solution by method, Sec 2.3.2)
4	13 Feb	Free particle and plane wave solutions, wave packets, phase and group velocities, time evolution of a wave packet	Ch. 2.4
5	18 Feb	Bound and scattering states; delta function well and barrier	Ch. 2.5
6	20 Feb	Finite square well	Ch. 2.6
7	25 Feb	Hilbert space	Ch. 3.1
8	27 Feb	Hermitian operators and observables	Ch 3.2, 3.3
9	4 Mar	Quantum measurement, position and momentum space representation of wavefunctions	Ch 3.4
10	6 Mar	Simultaneous measurements and uncertainty principle; conservation laws	Ch 3.5 (excluding minimum u wavepacket, Ch 3.5.2)
11	11 Mar	Conservation laws; energy-time uncertainty principle; philosophical issues of QM	Ch 3.5.3
12	13 Mar	QM in a finite dimensional Hilbert space	Ch 3.6
13	18 Mar	SE in 3D under central potential; radial and angular equation; solution to angular equation	Ch 4.1

14	20 Mar	Visualizing spherical harmonics; radial equation	Ch 4.1
15	25 Mar	Hydrogen atom wave function and electron density	Ch 4.2 (excluding series soluti equation, Griffiths Eq. 4.62 to
16	27 Mar	Eigenvalues of angular momentum by algebraic method	Ch 4.3, 4.3.1
17	8 Apr	Orbital angular momentum, its eigenfunctions, eigenvalues and their interpretation	Ch 4.3.2
18	10 Apr	Spin angular momentum	Ch 4.4, 4.4.1
19	15 Apr	Spin angular momentum in an external magnetic field, Larmor precession, Stern-Gerlach experiment	Ch 4.4.2
20	17 Apr	Addition of angular momenta, coupling of two spin-1/2 objects, singlet and triplet	Ch 4.4.3
21	22 Apr	Addition of angular momenta, Clebsh- Gordon coefficients	Ch 4.4.3
22	24 Apr	Two-particle systems; bosons and fermions	Ch 5.1-5.1.1
23	29 Apr	Exchange force; electrons in covalent bond	Ch 5.1.2
24	6 May	Hydrogen-like atoms; Helium	Ch 5.2-5.2.1
25	8 May	Multi-electron atoms, periodic table	Ch 5.2.2

Mapping of Course ILOs to Assessment Tasks

Assessed Task	Mapped ILOs	Explanation		
Homework	ILO1, ILO2, ILO3, ILO4, ILO5, ILO6, ILO7	This task assesses students' ability to explain the meaning of wavefunctions (ILO 1), compare		

		and contrast exact wavefunctions of typical one-dimensional single particle problems (ILO 2), treat quantum mechanical states as vectors in a Hilbert space y (ILO 3), predict possible outcomes of experimental observations on a quantum mechanical state (ILO 4), analyze exact wavefunctions of the hydrogen atom and relate it to experimental observations (ILO5), describe orbital and spin angular momenta of an electron and their relation to experimental observations (ILO6) and solve simple problems involving more than one non-interacting particles (ILO7).
Midterm	ILO1, ILO2, ILO3, ILO4 ILO5, ILO6, ILO7	This task assesses students' ability to explain the meaning of wavefunctions (ILO 1), compare and contrast exact wavefunctions of typical one-dimensional single particle problems (ILO 2), treat quantum mechanical states as vectors in a Hilbert space y (ILO 3), predict possible outcomes of experimental observations on a quantum mechanical state (ILO 4).
Final	ILO1, ILO2, ILO3, ILO4 ILO5, ILO6, ILO7	This task assesses students' ability to explain the meaning of wavefunctions (ILO 1), compare and contrast exact wavefunctions of typical one-

to experimental observations (ILO5), describe orbital and spir angular momenta of an electror and their relation to experimenta observations (ILO6) and solve simple problems involving more than one non-interacting particles (ILO7). This task assesses students ability to explain the meaning o wavefunctions (ILO 1), compare and contrast exact			quantum mechanical state (ILO
to experimental observations (ILO5), describe orbital and spir angular momenta of an electror and their relation to experimenta observations (ILO6) and solve simple problems involving more than one non-interacting particles (ILO7). This task assesses students ability to explain the meaning o wavefunctions (ILO 1), compare and contrast exact			-
(ILO5), describe orbital and spir angular momenta of an electror and their relation to experimenta observations (ILO6) and solve simple problems involving more than one non-interacting particles (ILO7). This task assesses students ability to explain the meaning of wavefunctions (ILO 1), compare and contrast exactions.			of the hydrogen atom and relate it
angular momenta of an electron and their relation to experimenta observations (ILO6) and solve simple problems involving more than one non-interacting particles (ILO7). This task assesses students ability to explain the meaning o wavefunctions (ILO 1), compare and contrast exact			to experimental observations
and their relation to experimental observations (ILO6) and solve simple problems involving more than one non-interacting particles (ILO7). This task assesses students ability to explain the meaning of wavefunctions (ILO 1), compare and contrast exactions.			(ILO5), describe orbital and spin
observations (ILO6) and solve simple problems involving more than one non-interacting particles (ILO7). This task assesses students ability to explain the meaning o wavefunctions (ILO 1), compare and contrast exact			_
simple problems involving more than one non-interacting particles (ILO7). This task assesses students ability to explain the meaning o wavefunctions (ILO 1), compare and contrast exac			
than one non-interacting particles (ILO7). This task assesses students ability to explain the meaning o wavefunctions (ILO 1), compare and contrast exactions.			observations (ILO6) and solve
particles (ILO7). This task assesses students ability to explain the meaning o wavefunctions (ILO 1), compare and contrast exact			simple problems involving more
This task assesses students ability to explain the meaning o wavefunctions (ILO 1), compare and contrast exac			than one non-interacting
ability to explain the meaning o wavefunctions (ILO 1), compare and contrast exac			particles (ILO7).
wavefunctions (ILO 1), compare and contrast exac			This task assesses students'
and contrast exac			ability to explain the meaning of
			wavefunctions (ILO 1), compare
			and contrast exact
wavefunctions of typical one			wavefunctions of typical one-
dimensional single particle			dimensional single particle
problems (ILO 2), treat quantum			problems (ILO 2), treat quantum
mechanical states as vectors in a			mechanical states as vectors in a
Hilbert space y (ILO 3), predic			Hilbert space y (ILO 3), predict
possible outcomes o			possible outcomes of
ILO1, ILO2, ILO3, ILO4, experimental observations on a	O.:-	ILO1, ILO2, ILO3, ILC	4, experimental observations on a
Quiz ILO5, ILO6, ILO7 quantum mechanical state (ILO	Quiz	ILO5, ILO6, ILO7	quantum mechanical state (ILO
4), analyze exact wavefunctions			4), analyze exact wavefunctions
of the hydrogen atom and relate i			of the hydrogen atom and relate it
			(ILO5), describe orbital and spin
			angular momenta of an electron
			and their relation to experimental
			observations (ILO6) and solve
			simple problems involving more
particles (ILO7).			

Final Grade Descriptors:
[As appropriate to the course and aligned with university standards]

Grades	Short Description	Elaboration on subject grading description			
А	Excellent Performance	Demonstrates a comprehensive grasp of quantum mechanics, expertise in solving the Schrodinger equation, interpreting the wavefunction for the			
		potentials covered in the course and related potentials,			

	ı	
		and predicting outcomes of experimental observations
		on a quantum mechanical state.
		Shows good knowledge and understanding of quantum
В		mechanics, competence in solving the Schrodinger
	Good Performance	equation and interpreting the wavefunction for the
	Good Feriorillance	potentials covered in the course and related potentials,
		and predicting outcomes of experimental observations
		on a quantum mechanical state.
		Possesses adequate knowledge of quantum mechanics,
C D		solving the Schrodinger equation and interpreting the
	Satisfactory	wavefunction for the potentials covered in the course
	Performance	and related potentials, and predicting outcomes of
		experimental observations on a quantum mechanical
		state.
		Has threshold knowledge of quantum mechanics,
	Marginal Pass	solving the Schrodinger equation and interpreting the
		wavefunction for the potentials covered in the course
		and related potentials, and predicting outcomes of
		experimental observations on a quantum mechanical
		state.
		Demonstrates insufficient understanding of quantum
F	Fail	mechanics, solving the Schrodinger equation and
		interpreting the wavefunction for the potentials covered
'		in the course and related potentials, and predicting
		outcomes of experimental observations on a quantum
		mechanical state.

	Excellent	Good	Satisfactory	Marginal	Final
Homewo	Exhibits a	Displays	Has a	Possesses	nadequate
rk.	thorough	solid	sufficient	basic	understandi
Midterm,	understandi	understandi	understandi	understandi	ng of
Final	ng of	ng of	ng of	ng of	quantum
Exam	quantum	quantum	quantum	quantum	mechanics,
	mechanics,	mechanics,	mechanics,	mechanics,	struggles in
	proficiency	competenc	capability in	limited	solving the
	in solving	y in solving	solving the	capability in	Schrödinger
	the	the	Schrödinger	solving the	equation,
	Schrödinger	Schrödinger	equation,	Schrödinger	interpreting
	equation,	equation,	interpreting	equation,	wavefuncti
	interpreting	interpreting	wavefuncti	interpreting	ons for the
	wavefuncti	wavefuncti	ons for the	wavefuncti	potentials
	ons for the	ons for the	potentials	ons for the	discussed
	potentials	potentials	discussed	potentials	in the

discussed	discussed	in the	discussed	course and
in the	in the	course and	in the	similar
course and	course and	similar	course and	potentials,
similar	similar	potentials,	similar	and
potentials,	potentials,	and	potentials,	forecasting
and	and	forecasting	and	the results
forecasting	forecasting	the results	forecasting	of
the results	the results	of	the results	experiment
of	of	experiment	of	al
experiment	experiment	al	experiment	observation
al	al	observation	al	s related to
observation	observation	s related to	observation	a quantum
s related to	s related to	a quantum	s related to	mechanical
a quantum	a quantum	mechanical	a quantum	state.
mechanical	mechanical	state.	mechanical	
state.	state.		state.	

Course AI Policy

Students can use generative in learning the course material, but not in doing the homework assignment.

Communication and Feedback

Assessment marks for individual assessed tasks will be communicated via Canvas within two weeks of submission. Students who have further questions about the feedback including marks should consult the instructor within five working days after the feedback is received.

Required Texts and Materials

David J. Griffiths, Introduction to Quantum Mechanics, 2nd Edition, Prentice Hall (2005) QC174.12 .G75 2005

or

3rd Edition, Cambridge University Press (2018) QC174.12 .G75 2018

Academic Integrity

Students are expected to adhere to the university's academic integrity policy. Students are expected to uphold HKUST's Academic Honor Code and to maintain the highest standards of academic integrity. The University has zero tolerance of academic misconduct. Please refer to <u>Academic Integrity | HKUST – Academic Registry</u> for the University's definition of plagiarism and ways to avoid cheating and plagiarism.